Local-global principles for tori over arithmetic curves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curves over Every Global Field Violating the Local-global Principle

There is an algorithm that takes as input a global field k and produces a curve over k violating the local-global principle. Also, given a global field k and a nonnegative integer n, one can effectively construct a curve X over k such that #X(k) = n.

متن کامل

Metaplectic Tori over Local Fields

Smooth irreducible representations of tori over local fields have been parameterized by Langlands, using class field theory and Galois cohomology. This paper extends this parameterization to central extensions of such tori, which arise naturally in the setting of nonlinear covers of reductive groups.

متن کامل

Counterexamples to the local-global divisibility over elliptic curves

Let p ≥ 5 be a prime number. We find all the possible subgroups G of GL2(Z/pZ) such that there exists a number field k and an elliptic curve E defined over k such that the Gal(k(E [p])/k)-module E [p] is isomorphic to the G-module (Z/pZ)2 and there exists n ∈ N such that the local-global divisibility by pn does not hold over E(k).

متن کامل

Cycle groups of curves over global fields

The purpose of this investigation is to study certain low-dimensional cycle groups of smooth projective curves over global fields of positive characteristic, that is, fields which are finitely generated of transcendence degree one over a finite field. After a brief introduction, we overview some established results in this area and extend them appropriately. Throughout this paper, an algebraic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic Geometry

سال: 2020

ISSN: 2214-2584

DOI: 10.14231/ag-2020-022